Шкалы времени (ОП СРНС, лекция) — различия между версиями

Материал из SRNS
Перейти к: навигация, поиск
(Астрономическое время)
(Практика первого года)
 
(не показаны 9 промежуточных версий 1 участника)
Строка 21: Строка 21:
 
Часы, идеально реализующие абсолютную шкалу времени, никто ещё не изобрел, но потребность в ней огромна, т.к. именно ею оперируют математические модели наших законов. Различные шкалы времени, с одной стороны, пытаются приблизиться к ней в той или иной степени, а с другой - быть удобными для использования с определенным кругом моделей. Так, для повседневной жизни удобно пользоваться настенным календарем, определяемым сменой дня и ночи, а для проведения научных экспериментов на адронном коллайдере - атомным стандартом.
 
Часы, идеально реализующие абсолютную шкалу времени, никто ещё не изобрел, но потребность в ней огромна, т.к. именно ею оперируют математические модели наших законов. Различные шкалы времени, с одной стороны, пытаются приблизиться к ней в той или иной степени, а с другой - быть удобными для использования с определенным кругом моделей. Так, для повседневной жизни удобно пользоваться настенным календарем, определяемым сменой дня и ночи, а для проведения научных экспериментов на адронном коллайдере - атомным стандартом.
  
== Астрономическое время ==
+
== Истинное солнечное время ==
  
 
Системы астрономического времени появились исторически первыми и основаны на суточном вращении Земли.
 
Системы астрономического времени появились исторически первыми и основаны на суточном вращении Земли.
Строка 28: Строка 28:
 
[[file:2013_gryrvr.jpg|График уравнения времени (разница истинного и среднего солнечного времени) и его составляющие|thumb]]
 
[[file:2013_gryrvr.jpg|График уравнения времени (разница истинного и среднего солнечного времени) и его составляющие|thumb]]
 
'''Истинное местное солнечное время''' определяется реальным углом видимости Солнца из центра Земли в проекции на линии меридиан. Полдень определяется по прохождению Солнца в наивысшей точке. Истинное местное солнечное время - это то время, которое показывают солнечные часы. Возвращаясь к абстракции событий, в данной шкале времени событие 'Солнце в зените' определяет середину дня, а факт нахождения Солнца под определенным углом - соответствующий час, минуту и секунду.
 
'''Истинное местное солнечное время''' определяется реальным углом видимости Солнца из центра Земли в проекции на линии меридиан. Полдень определяется по прохождению Солнца в наивысшей точке. Истинное местное солнечное время - это то время, которое показывают солнечные часы. Возвращаясь к абстракции событий, в данной шкале времени событие 'Солнце в зените' определяет середину дня, а факт нахождения Солнца под определенным углом - соответствующий час, минуту и секунду.
 +
 +
== Среднее солнечное время ==
  
 
Движение Солнца по небосводу определяется набором вращений (Земли вокруг своей оси и вокруг Солнца). Истинное местное солнечное время течет относительно абсолютного неравномерно - длительность суток варьируется на несколько десяток минут в зависимости от времени года. Связано это с:
 
Движение Солнца по небосводу определяется набором вращений (Земли вокруг своей оси и вокруг Солнца). Истинное местное солнечное время течет относительно абсолютного неравномерно - длительность суток варьируется на несколько десяток минут в зависимости от времени года. Связано это с:
Строка 37: Строка 39:
 
Разница между средним и истинным солнечным временем называется '''уравнением времени'''.  
 
Разница между средним и истинным солнечным временем называется '''уравнением времени'''.  
  
'''Гринвичское среднее время (GMT)''' — это среднее солнечное время на начальном меридиане.  
+
'''Гринвичское среднее время (GMT)''' — это среднее солнечное время на начальном меридиане. Долгие годы эта шкала времени лежала в основе показаний часов по всему миру.  
 
<!-- Уточнённое всемирное время отсчитывается при помощи атомных часов и называется UTC (Universal Time Coordinated, Всемирное координированное время). Это время принято одинаковым для всего земного шара. -->
 
<!-- Уточнённое всемирное время отсчитывается при помощи атомных часов и называется UTC (Universal Time Coordinated, Всемирное координированное время). Это время принято одинаковым для всего земного шара. -->
 +
 +
== Современные аппроксимации среднего солнечного времени ==
  
 
Изначально расчетом GMT занималась непосредственно обсерватория в Гринвиче, затем эту функцию расширили на ряд других обсерваторий. Но всё равно точный расчёт среднего солнечного времени непосредственно по наблюдениям за Солнцем - трудновыполнимая задача. Поэтому появился ряд шкал времени, называемых '''всемирным временем (UT)''' и аппроксимирующих GMT.  
 
Изначально расчетом GMT занималась непосредственно обсерватория в Гринвиче, затем эту функцию расширили на ряд других обсерваторий. Но всё равно точный расчёт среднего солнечного времени непосредственно по наблюдениям за Солнцем - трудновыполнимая задача. Поэтому появился ряд шкал времени, называемых '''всемирным временем (UT)''' и аппроксимирующих GMT.  
  
Всемирное время вычисляется по наблюдениям внегалактических источников радиоизлучения, и затем пересчитывается в несколько форм, основные из которых:
+
Всемирное время вычисляется по наблюдениям внегалактических источников радиоизлучения, и затем пересчитывается в несколько форм, например:
 
*'''UT0''' - наблюдаемое время гринвичского меридиана для мгновенного положения земных полюсов,
 
*'''UT0''' - наблюдаемое время гринвичского меридиана для мгновенного положения земных полюсов,
 
*'''UT1''' - UT0, скорректированное с учётом движения полюсов Земли,
 
*'''UT1''' - UT0, скорректированное с учётом движения полюсов Земли,
*'''UTC''' - аппроксимация UT1 на основе атомной шкалы времени.
 
  
Местное среднее солнечное время зависит от долготы места, что неудобно в повседневном использовании. Выход из ситуации - использование '''поясного времени'''. Земной шар размечен на 24 часовых пояса, в пределах которых время считается одним и тем же, а с переходом в соседний часовой пояс меняется ровно на 1 час.
+
Шкала всемирного времени UT1 является неравномерной относительно абсолютного времени. Секунды в ней могут быть как более длительными, так и менее длительными секунд системы СИ.  
  
'''Декретное время''' — поясное время плюс один час. В 1930 году по декрету правительства на всей территории СССР время было переведено на 1 час вперед, таким образом, Москва, формально находясь во втором часовом поясе имело время, отличающееся от Гринвича на +3 часа. В течение многих лет это время являлось основным гражданским временем в СССР и России. Применялось с 16 июня 1930 года до 31 марта 1991 года в СССР, с 19 января 1992 года до 27 марта 2011 года в РФ, в настоящее время применяется в ряде стран СНГ.  
+
'''Требуется переработка текста''' В разделе про абсолютное время рассказать про атомное, тут уже ввести UTC на основе TAI.
  
Так исторически сложилось, что московское декретное время используется при расчете положения спутников на орбите по альманаху системы ГЛОНАСС, в котором время прохождения спутником восходящего узла задано именно в этой шкале.
+
C 1964 года ввели равномерно-переменную шкалу времени UTC — всемирного координированного времени, связывающую шкалу UT1 и шкалу строго равномерного Международного атомного времени '''TAI'''.  
 
+
'''Летнее время''' — сезонный перевод стрелок +1 час в последнее воскресенье марта и возврат в последнее воскресенье октября (с лета 2011 года установлено постоянным в России).
+
 
+
== Атомное время ==
+
  
 
<!-- Скопировано -->
 
<!-- Скопировано -->
Международное атомное время TAI было введено в июле 1955 г. в качестве основного временного стандарта.
+
Международное атомное время TAI было введено в июле 1955 г. в качестве основного временного стандарта. С 1967 года международная система единиц СИ определяет одну секунду как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Это число было выбрано для того, чтобы приблизить величину фундаментальной единицы времени в Международной системе научных единиц СИ к средней секунде астрономических систем времени.  
 
+
С 1967 года международная система единиц СИ определяет одну секунду как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Это число было выбрано для того, чтобы приблизить величину фундаментальной единицы времени в Международной системе научных единиц СИ к средней секунде астрономических систем времени.  
+
  
 
Время TAI вычисляется из группы атомных часов более чем 50 лабораторий научных центров разных стран. Это делает Международное бюро мер и весов (BIH), базирующееся в Севре, вблизи Парижа, для чего использует различные методы сравнения часов. Шкала времени TAI была совмещена со шкалой UT1 1 января 1958 г.
 
Время TAI вычисляется из группы атомных часов более чем 50 лабораторий научных центров разных стран. Это делает Международное бюро мер и весов (BIH), базирующееся в Севре, вблизи Парижа, для чего использует различные методы сравнения часов. Шкала времени TAI была совмещена со шкалой UT1 1 января 1958 г.
  
 
Долговременная нестабильность атомных часов <math>\Delta\nu/\nu</math> (где <math>\Delta\nu</math> — отклонение частоты <math>\nu </math> часов за некоторый период времени) обычно лежит в пределах {{nobr|10<sup>−14</sup>—10<sup>−15</sup>}}, а в специальных конструкциях достигает 10<sup>−17</sup><ref name="record">{{cite web|url=http://www.membrana.ru/particle/3678|title=Поставлен новый рекорд точности атомных часов|date=5 февраля 2010|accessdate=2011-03-04|archiveurl=http://www.webcitation.org/65JoP77Ex|archivedate=2012-02-09}}</ref>, и является наилучшей среди всех существующих типов часов.
 
Долговременная нестабильность атомных часов <math>\Delta\nu/\nu</math> (где <math>\Delta\nu</math> — отклонение частоты <math>\nu </math> часов за некоторый период времени) обычно лежит в пределах {{nobr|10<sup>−14</sup>—10<sup>−15</sup>}}, а в специальных конструкциях достигает 10<sup>−17</sup><ref name="record">{{cite web|url=http://www.membrana.ru/particle/3678|title=Поставлен новый рекорд точности атомных часов|date=5 февраля 2010|accessdate=2011-03-04|archiveurl=http://www.webcitation.org/65JoP77Ex|archivedate=2012-02-09}}</ref>, и является наилучшей среди всех существующих типов часов.
 +
 +
Масштабы UTC и TAI равны, а смещение меняется скачком. Между UTC и UT1 накапливается расхождение, обусловленное, во-первых, неравномерностью шкалы UT1, а во-вторых, неравенством масштабов UT1 и TAI (1 атомная [[секунда]] не равна в точности 1 секунде UT1). При нарастании расхождения между UTC и UT1 до 0,9 с производится корректировка скачком на 1 с.
 +
 +
Дополнительная [[секунда]], называемая «[[секунда координации]]» или «високосная секунда», добавляется [[30 июня]] или [[31 декабря]] при необходимости. Теоретически, может потребоваться и вычитание секунды, но пока, начиная с первого изменения [[30 июня]] [[1972]] — все изменения были положительны, с добавлением секунды после секунды 23:59:59. Добавленная секунда обозначается 23:59:60. Добавление секунды определяется [[International Earth Rotation and Reference Systems Service]] (IERS), согласно их наблюдению за вращением Земли.
 +
 +
Сигналы точного времени передаются по [[радио]], [[телевидение|телевидению]] и через [[интернет|Интернет]] в системе UTC.
 +
 +
Разница между всемирным временем и всемирным координированным временем DUT1=UT1-UTC постоянно отслеживается и еженедельно публикуется на сайте [[International Earth Rotation and Reference Systems Service|IERS]] в Бюллетене А (Bulletin - A).
 +
 +
Местное среднее солнечное время зависит от долготы места, что неудобно в повседневном использовании. Выход из ситуации - использование '''поясного времени'''. Земной шар размечен на 24 часовых пояса, в пределах которых время считается одним и тем же, а с переходом в соседний часовой пояс меняется ровно на 1 час.
 +
 +
'''Декретное время''' — поясное время плюс один час. В 1930 году по декрету правительства на всей территории СССР время было переведено на 1 час вперед, таким образом, Москва, формально находясь во втором часовом поясе имело время, отличающееся от Гринвича на +3 часа. В течение многих лет это время являлось основным гражданским временем в СССР и России. Применялось с 16 июня 1930 года до 31 марта 1991 года в СССР, с 19 января 1992 года до 27 марта 2011 года в РФ, в настоящее время применяется в ряде стран СНГ.
 +
 +
Так исторически сложилось, что московское декретное время используется при расчете положения спутников на орбите по альманаху системы ГЛОНАСС, в котором время прохождения спутником восходящего узла задано именно в этой шкале.
 +
 +
'''Летнее время''' — сезонный перевод стрелок +1 час в последнее воскресенье марта и возврат в последнее воскресенье октября (с лета 2011 года установлено постоянным в России).
  
 
== Системы динамического времени ==
 
== Системы динамического времени ==
Строка 70: Строка 83:
 
== Системная шкала времени, бортовая шкала времени ==
 
== Системная шкала времени, бортовая шкала времени ==
  
=== GPS Time ===
+
<!-- Взято из wiki, почти не переработано -->
 +
Спутниковые навигационные системы GPS и ГЛОНАСС функционируют в собственном системном времени. Все процессы измерений фиксируются в этой шкале времени. Необходимо, чтобы шкалы времени используемых спутников были согласованы между собой. Это достигается независимой привязкой каждой из шкал спутников к системному времени.
 +
Системная шкала времени есть шкала атомного времени. Она задаётся сектором управления и контроля, где поддерживается с точностью более высокой, чем бортовые шкалы спутников.
  
=== Шкала времени ГЛОНАСС ===
+
'''Системное время ''GPS'' (''TGPS'')''' — это Всемирное координированное время (''UTC''), отнесённое к началу 1980 года. Поправки ''TGPS'' к ''UTC'' регистрируются с высокой точностью и передаются в виде постоянной величины в навигационном сообщении, а также публикуются в специальных бюллетенях.
 +
 
 +
'''Системное время ГЛОНАСС''' также периодически подстраивается под Всемирное координированное время (используется Московское дискретное время на основе UTC(SU)).
 +
 
 +
В бортовую шкалу времени каждого из спутников вводится пересчётный коэффициент, зависящий от высоты орбиты и учитывающий релятивистские эффекты: движение спутника относительно наземных часов; разность гравитационных потенциалов на орбите и на поверхности Земли. Для системы ГЛОНАСС релятивистская поправка составляет 37,7 мкс в сутки.
  
 
== Шкала времени приемника ==
 
== Шкала времени приемника ==
Строка 88: Строка 107:
 
== Ссылки ==
 
== Ссылки ==
 
<references/>
 
<references/>
 +
 +
== Практика первого года ==
 +
 +
Занятие начал с простой задачи: определить модуль вектора скорости своего тела в ECEF, ECI, ENU. Решалась коллективным разумом. Ответ - около 0, 1000 км/ч, 0.
 +
 +
Понятие события. Время как последовательность, счетчик событий.
 +
Эпоха и интервал (забыл в этом году).
 +
 +
Понятие абсолютного времени Ньютона, как параметр физических моделей. О его относительности.
 +
 +
Идеальные абсолютные часы нам не создать, но как и всегда, есть эталон. Сейчас в качестве эталона времени системе СИ выступает атом цезия. Рассказ про устройство атомных стандартов.
 +
 +
Атомное время TAI (Temps Atomique International), его график время-время (т.к. абсолютное время относительно, то возможно множество параллельных переносов). У него есть свойство равномерности и непрерывности. Но оно не привязано к физическим явлениям, не синхронизируется с календарем. А человек живет от рассвета до заката.
 +
 +
Астрономические шкалы времени возникли раньше, именно они и ввели понятие секунды, переопределенное на современный манер. В астрономических системах солнце и прочие светила, их положение относительно Земли, и являются событиями, определяющими время.
 +
 +
Истинное солнечное время ST. Полдень, когда Солнце в зените. Понятная шкала времени привязанная к повседневной жизни, но вот только неравномерная. Весной и зимой сутки имеют разную длительность. График время-время для истинного солнечного времени. Объяснение причин неравномерности. Масштабы проблемы.
 +
 +
Разумный выход - провести среднюю линию в масштабах года. Получает среднее солнечное время LST. Разница - уравнение времени.
 +
 +
Истинное и среднее солнечное время своё на каждой долготе. GMT - это LST на нулевом меридиане.
 +
 +
Всё замечательно, этим временем и пользовались долгие годы, вот только точности измерений времени по Солнцу (кстати вопрос - а какая была точность?) уже не доставало. Более точно можно измерить ориентацию относительно квазаров, звезд и т.д., а затем ручками, на основании моделей, пересчитать в GMT. Так появляются UT0 (без учета движения полюсов) и UT1 (с учетом движения полюсов). Полноценное уже всемирное время, не привязано к измерениям именно в Британии.
 +
 +
Но эти шкалы времени все равно неравномерны по сравнению с TAI. Выход - совместить TAI и UT1. К TAI прибавлять целое число секунд, пока не получим разницу по модулю меньше 1 с. Так получается UTC. График время-время. Leap seconds. График расхождения UTC и UT1. Полученная шкала относительно равномерна, но не обладает свойством непрерывности.
 +
 +
Есть разновидности UTC, основанные на национальных стандартах частоты, которые хоть и привязаны TAI, но, естественно, неидеально. Отсюда UTC(SU), UTC(USNO), UTC(NIST), UTC(ESTEC).
 +
 +
Но это всё шкалы времени, привязанные к зениту Солнца над Гринвичем. А пользоваться часами нам нужно по всему земному шару. Вводить в каждом городе своё время - тоже не выход. Отсюда идея часовых поясов.
 +
 +
Декретное время. Причина дополнительного сдвига поясов в России на +1.
 +
 +
Летнее время, ещё сдвиг на +1, итого Москва от UTC и GMT отличается на +4.
 +
 +
Системная, бортовая и шкала времени приемника. Разные стандарты частоты в основе.
 +
 +
Системные шкалы времени привязаны к UTC соответствующей страны (уточнить точность, проставить ссылки). У нас - ВНИИФТРИ, у них - ?.
 +
 +
Системная шкала ГЛОНАСС - московское дискретное время на основании UTC(SU). Минусы - она не обладает свойством непрерывности, что очень неудобно при проведении расчетом.
 +
 +
Системная шкала в NAVSTAR GPS - GPS Time. Привязана к UTC 5 января 1980 года, с тех пор leap seconds они не учитывают. Основные единицы измерения - GPS Week, TimeOfWeek. Шкала непрерывная. Аналогичные используются в Galileo и COMPASS. Упрощается устройство аппаратуры, а необходимые поправки вносятся при выдаче пользователю.
 +
 +
Хранитель СШВ - подсистема контроля и управления. На спутниках используется атомный стандарт, но он всё равно уходит. Одна из функций подсистемы контроля и управления - оценивать этот уход и закладывать поправки в навигационное сообщение. Важный момент - шкала борта не дергается, просто закладываются поправки в сообщение.
 +
 +
Тут нужно (в этом году забыл) рассказать о релятивистских эффектах. О специальном смещении бортовой шкалы времени в СК, связанной со спутником.
 +
 +
У потребителя, как правило, дешевый кварцевый осциллятор. В основном встречаются двух типов - TCXO и OCXO. Приемник может иметь разную степень синхронизации с СШВ. Если он не принимает сигналы спутников, то точность его часов определяется уходом от прошлого сеанса связи. Если он видит несколько сигналов, но не решается, то по информации, заложенной в сигнал, может определиться с точностью в несколько мс (каждый сигнал - шкала времени одного борта). Если полноценно решается, то определяет не только координаты, но и точную поправку к своим часам. В итоге точность - порядка десятков наносекунд.
 +
 +
Диаграмма обмена с хостом: pps, TX, RX. Сообщения NMEA.
 +
 +
На последок, наглядная демонстрация того, как расходятся шкалы времени двух радиоприборов с собственными ОГ. Генератор и FSV в режиме анализатор сигналов. IQ. Демонстрация подстройки частоты.

Текущая версия на 17:39, 4 октября 2013

Содержание

[править] Шкала времени как временная система координат

На прошлом занятии рассматривались пространственные системы координат. На времени тоже можно ввести систему координат, но уже, соответственно, временную. Отсюда шкала времени - система, сопоставляющая каждому моменту времени число (строго говоря, следуя за Эйнштейном, лишь в данной пространственной системе координат).

[править] Событие, эпоха, интервал

Одни из основных понятий, используемых при работе со шкалами времени - это событие, эпоха и интервал.

Событие — факт изменения состояния мира. Нечто различается до и после события. Наличие событий и формирует время - последовательность событий.

Эпоха - аналог пространственных координат, определяет момент события в рассматриваемой шкале.

Интервал - расстояние между двумя эпохами; время, протекшее между двумя эпохами, измеренное в единицах соответствующей шкалы времени.

[править] Абсолютное время и реальные часы

Существует множество различных пространственных систем координат, аналогично - существует множество шкал времени, отличающихся началом отсчета, единицами измерений, непрерывностью и т.д.

Начиная с Ньютона, часто используется абстракция некоторого абсолютного времени - той или иной шкалы времени, эпохи которой используются как параметр в тех или иных физических законах - кинематики, электродинамики, квантовой механики и т.д.

Часы, идеально реализующие абсолютную шкалу времени, никто ещё не изобрел, но потребность в ней огромна, т.к. именно ею оперируют математические модели наших законов. Различные шкалы времени, с одной стороны, пытаются приблизиться к ней в той или иной степени, а с другой - быть удобными для использования с определенным кругом моделей. Так, для повседневной жизни удобно пользоваться настенным календарем, определяемым сменой дня и ночи, а для проведения научных экспериментов на адронном коллайдере - атомным стандартом.

[править] Истинное солнечное время

Системы астрономического времени появились исторически первыми и основаны на суточном вращении Земли.

График уравнения времени (разница истинного и среднего солнечного времени) и его составляющие

Истинное местное солнечное время определяется реальным углом видимости Солнца из центра Земли в проекции на линии меридиан. Полдень определяется по прохождению Солнца в наивысшей точке. Истинное местное солнечное время - это то время, которое показывают солнечные часы. Возвращаясь к абстракции событий, в данной шкале времени событие 'Солнце в зените' определяет середину дня, а факт нахождения Солнца под определенным углом - соответствующий час, минуту и секунду.

[править] Среднее солнечное время

Движение Солнца по небосводу определяется набором вращений (Земли вокруг своей оси и вокруг Солнца). Истинное местное солнечное время течет относительно абсолютного неравномерно - длительность суток варьируется на несколько десяток минут в зависимости от времени года. Связано это с:

  • эллиптичностью земной орбиты (Земля движется быстрее в области перигелия и медленнее в области афелия)
  • наклоном земной оси относительно плоскости эклиптики (в различное время года между ними различный угол, взаимные скорости вращения компенсируются различно).

Среднее местное солнечное время (LST, local mean solar time) — условное равномерно текущее время, совпадающее с солнечным в среднем.

Разница между средним и истинным солнечным временем называется уравнением времени.

Гринвичское среднее время (GMT) — это среднее солнечное время на начальном меридиане. Долгие годы эта шкала времени лежала в основе показаний часов по всему миру.

[править] Современные аппроксимации среднего солнечного времени

Изначально расчетом GMT занималась непосредственно обсерватория в Гринвиче, затем эту функцию расширили на ряд других обсерваторий. Но всё равно точный расчёт среднего солнечного времени непосредственно по наблюдениям за Солнцем - трудновыполнимая задача. Поэтому появился ряд шкал времени, называемых всемирным временем (UT) и аппроксимирующих GMT.

Всемирное время вычисляется по наблюдениям внегалактических источников радиоизлучения, и затем пересчитывается в несколько форм, например:

  • UT0 - наблюдаемое время гринвичского меридиана для мгновенного положения земных полюсов,
  • UT1 - UT0, скорректированное с учётом движения полюсов Земли,

Шкала всемирного времени UT1 является неравномерной относительно абсолютного времени. Секунды в ней могут быть как более длительными, так и менее длительными секунд системы СИ.

Требуется переработка текста В разделе про абсолютное время рассказать про атомное, тут уже ввести UTC на основе TAI.

C 1964 года ввели равномерно-переменную шкалу времени UTC — всемирного координированного времени, связывающую шкалу UT1 и шкалу строго равномерного Международного атомного времени TAI.

Международное атомное время TAI было введено в июле 1955 г. в качестве основного временного стандарта. С 1967 года международная система единиц СИ определяет одну секунду как 9 192 631 770 периодов электромагнитного излучения, возникающего при переходе между двумя сверхтонкими уровнями основного состояния атома цезия-133. Это число было выбрано для того, чтобы приблизить величину фундаментальной единицы времени в Международной системе научных единиц СИ к средней секунде астрономических систем времени.

Время TAI вычисляется из группы атомных часов более чем 50 лабораторий научных центров разных стран. Это делает Международное бюро мер и весов (BIH), базирующееся в Севре, вблизи Парижа, для чего использует различные методы сравнения часов. Шкала времени TAI была совмещена со шкалой UT1 1 января 1958 г.

Долговременная нестабильность атомных часов \Delta\nu/\nu (где \Delta\nu — отклонение частоты \nu часов за некоторый период времени) обычно лежит в пределах 10−14—10−15, а в специальных конструкциях достигает 10−17[1], и является наилучшей среди всех существующих типов часов.

Масштабы UTC и TAI равны, а смещение меняется скачком. Между UTC и UT1 накапливается расхождение, обусловленное, во-первых, неравномерностью шкалы UT1, а во-вторых, неравенством масштабов UT1 и TAI (1 атомная секунда не равна в точности 1 секунде UT1). При нарастании расхождения между UTC и UT1 до 0,9 с производится корректировка скачком на 1 с.

Дополнительная секунда, называемая «секунда координации» или «високосная секунда», добавляется 30 июня или 31 декабря при необходимости. Теоретически, может потребоваться и вычитание секунды, но пока, начиная с первого изменения 30 июня 1972 — все изменения были положительны, с добавлением секунды после секунды 23:59:59. Добавленная секунда обозначается 23:59:60. Добавление секунды определяется International Earth Rotation and Reference Systems Service (IERS), согласно их наблюдению за вращением Земли.

Сигналы точного времени передаются по радио, телевидению и через Интернет в системе UTC.

Разница между всемирным временем и всемирным координированным временем DUT1=UT1-UTC постоянно отслеживается и еженедельно публикуется на сайте IERS в Бюллетене А (Bulletin - A).

Местное среднее солнечное время зависит от долготы места, что неудобно в повседневном использовании. Выход из ситуации - использование поясного времени. Земной шар размечен на 24 часовых пояса, в пределах которых время считается одним и тем же, а с переходом в соседний часовой пояс меняется ровно на 1 час.

Декретное время — поясное время плюс один час. В 1930 году по декрету правительства на всей территории СССР время было переведено на 1 час вперед, таким образом, Москва, формально находясь во втором часовом поясе имело время, отличающееся от Гринвича на +3 часа. В течение многих лет это время являлось основным гражданским временем в СССР и России. Применялось с 16 июня 1930 года до 31 марта 1991 года в СССР, с 19 января 1992 года до 27 марта 2011 года в РФ, в настоящее время применяется в ряде стран СНГ.

Так исторически сложилось, что московское декретное время используется при расчете положения спутников на орбите по альманаху системы ГЛОНАСС, в котором время прохождения спутником восходящего узла задано именно в этой шкале.

Летнее время — сезонный перевод стрелок +1 час в последнее воскресенье марта и возврат в последнее воскресенье октября (с лета 2011 года установлено постоянным в России).

[править] Системы динамического времени

[править] Системная шкала времени, бортовая шкала времени

Спутниковые навигационные системы GPS и ГЛОНАСС функционируют в собственном системном времени. Все процессы измерений фиксируются в этой шкале времени. Необходимо, чтобы шкалы времени используемых спутников были согласованы между собой. Это достигается независимой привязкой каждой из шкал спутников к системному времени. Системная шкала времени есть шкала атомного времени. Она задаётся сектором управления и контроля, где поддерживается с точностью более высокой, чем бортовые шкалы спутников.

Системное время GPS (TGPS) — это Всемирное координированное время (UTC), отнесённое к началу 1980 года. Поправки TGPS к UTC регистрируются с высокой точностью и передаются в виде постоянной величины в навигационном сообщении, а также публикуются в специальных бюллетенях.

Системное время ГЛОНАСС также периодически подстраивается под Всемирное координированное время (используется Московское дискретное время на основе UTC(SU)).

В бортовую шкалу времени каждого из спутников вводится пересчётный коэффициент, зависящий от высоты орбиты и учитывающий релятивистские эффекты: движение спутника относительно наземных часов; разность гравитационных потенциалов на орбите и на поверхности Земли. Для системы ГЛОНАСС релятивистская поправка составляет 37,7 мкс в сутки.

[править] Шкала времени приемника

[править] Опорный генератор, его характеристики и накладываемые им ограничения

[править] НАП, как источник точного времени

[править] Точность, обеспечиваемая современными приемниками

[править] Сервер точного времени

[править] Ссылки

  1. Поставлен новый рекорд точности атомных часов (5 февраля 2010). Архивировано из первоисточника 9 февраля 2012. Проверено 4 марта 2011.

[править] Практика первого года

Занятие начал с простой задачи: определить модуль вектора скорости своего тела в ECEF, ECI, ENU. Решалась коллективным разумом. Ответ - около 0, 1000 км/ч, 0.

Понятие события. Время как последовательность, счетчик событий. Эпоха и интервал (забыл в этом году).

Понятие абсолютного времени Ньютона, как параметр физических моделей. О его относительности.

Идеальные абсолютные часы нам не создать, но как и всегда, есть эталон. Сейчас в качестве эталона времени системе СИ выступает атом цезия. Рассказ про устройство атомных стандартов.

Атомное время TAI (Temps Atomique International), его график время-время (т.к. абсолютное время относительно, то возможно множество параллельных переносов). У него есть свойство равномерности и непрерывности. Но оно не привязано к физическим явлениям, не синхронизируется с календарем. А человек живет от рассвета до заката.

Астрономические шкалы времени возникли раньше, именно они и ввели понятие секунды, переопределенное на современный манер. В астрономических системах солнце и прочие светила, их положение относительно Земли, и являются событиями, определяющими время.

Истинное солнечное время ST. Полдень, когда Солнце в зените. Понятная шкала времени привязанная к повседневной жизни, но вот только неравномерная. Весной и зимой сутки имеют разную длительность. График время-время для истинного солнечного времени. Объяснение причин неравномерности. Масштабы проблемы.

Разумный выход - провести среднюю линию в масштабах года. Получает среднее солнечное время LST. Разница - уравнение времени.

Истинное и среднее солнечное время своё на каждой долготе. GMT - это LST на нулевом меридиане.

Всё замечательно, этим временем и пользовались долгие годы, вот только точности измерений времени по Солнцу (кстати вопрос - а какая была точность?) уже не доставало. Более точно можно измерить ориентацию относительно квазаров, звезд и т.д., а затем ручками, на основании моделей, пересчитать в GMT. Так появляются UT0 (без учета движения полюсов) и UT1 (с учетом движения полюсов). Полноценное уже всемирное время, не привязано к измерениям именно в Британии.

Но эти шкалы времени все равно неравномерны по сравнению с TAI. Выход - совместить TAI и UT1. К TAI прибавлять целое число секунд, пока не получим разницу по модулю меньше 1 с. Так получается UTC. График время-время. Leap seconds. График расхождения UTC и UT1. Полученная шкала относительно равномерна, но не обладает свойством непрерывности.

Есть разновидности UTC, основанные на национальных стандартах частоты, которые хоть и привязаны TAI, но, естественно, неидеально. Отсюда UTC(SU), UTC(USNO), UTC(NIST), UTC(ESTEC).

Но это всё шкалы времени, привязанные к зениту Солнца над Гринвичем. А пользоваться часами нам нужно по всему земному шару. Вводить в каждом городе своё время - тоже не выход. Отсюда идея часовых поясов.

Декретное время. Причина дополнительного сдвига поясов в России на +1.

Летнее время, ещё сдвиг на +1, итого Москва от UTC и GMT отличается на +4.

Системная, бортовая и шкала времени приемника. Разные стандарты частоты в основе.

Системные шкалы времени привязаны к UTC соответствующей страны (уточнить точность, проставить ссылки). У нас - ВНИИФТРИ, у них - ?.

Системная шкала ГЛОНАСС - московское дискретное время на основании UTC(SU). Минусы - она не обладает свойством непрерывности, что очень неудобно при проведении расчетом.

Системная шкала в NAVSTAR GPS - GPS Time. Привязана к UTC 5 января 1980 года, с тех пор leap seconds они не учитывают. Основные единицы измерения - GPS Week, TimeOfWeek. Шкала непрерывная. Аналогичные используются в Galileo и COMPASS. Упрощается устройство аппаратуры, а необходимые поправки вносятся при выдаче пользователю.

Хранитель СШВ - подсистема контроля и управления. На спутниках используется атомный стандарт, но он всё равно уходит. Одна из функций подсистемы контроля и управления - оценивать этот уход и закладывать поправки в навигационное сообщение. Важный момент - шкала борта не дергается, просто закладываются поправки в сообщение.

Тут нужно (в этом году забыл) рассказать о релятивистских эффектах. О специальном смещении бортовой шкалы времени в СК, связанной со спутником.

У потребителя, как правило, дешевый кварцевый осциллятор. В основном встречаются двух типов - TCXO и OCXO. Приемник может иметь разную степень синхронизации с СШВ. Если он не принимает сигналы спутников, то точность его часов определяется уходом от прошлого сеанса связи. Если он видит несколько сигналов, но не решается, то по информации, заложенной в сигнал, может определиться с точностью в несколько мс (каждый сигнал - шкала времени одного борта). Если полноценно решается, то определяет не только координаты, но и точную поправку к своим часам. В итоге точность - порядка десятков наносекунд.

Диаграмма обмена с хостом: pps, TX, RX. Сообщения NMEA.

На последок, наглядная демонстрация того, как расходятся шкалы времени двух радиоприборов с собственными ОГ. Генератор и FSV в режиме анализатор сигналов. IQ. Демонстрация подстройки частоты.

Персональные инструменты
Пространства имён

Варианты
Действия
SRNS Wiki
Рабочие журналы
Приватный файлсервер
QNAP Сервер
Инструменты