Дискриминатор частоты оптимальный при малом отношении сигнал/шум — различия между версиями

Материал из SRNS
Перейти к: навигация, поиск
(Особенности работы)
Строка 15: Строка 15:
 
Для работы дискриминатора требуется формирование особенных квадратур <math>I'_k, Q'_k</math>. Они представляют собой обычные квадратуры, умноженные на линейно-возрастающую функцию <math>(l-1)T_d</math> (индекс времени <math>l</math> растет - множитель растет). Аппаратно такой коррелятор не реализован. Есть предложение <ref name="KorPhD">[[Публикация:Корогодин 2013 Разработка алгоритмов обработки сигналов СНС в аппаратуре определения угловой ориентации объектов]]</ref> заменить честный расчет <math>I'_k, Q'_k</math> суммой взвешенных корреляционных сумм: <br />
 
Для работы дискриминатора требуется формирование особенных квадратур <math>I'_k, Q'_k</math>. Они представляют собой обычные квадратуры, умноженные на линейно-возрастающую функцию <math>(l-1)T_d</math> (индекс времени <math>l</math> растет - множитель растет). Аппаратно такой коррелятор не реализован. Есть предложение <ref name="KorPhD">[[Публикация:Корогодин 2013 Разработка алгоритмов обработки сигналов СНС в аппаратуре определения угловой ориентации объектов]]</ref> заменить честный расчет <math>I'_k, Q'_k</math> суммой взвешенных корреляционных сумм: <br />
  
 +
<math>I'_{k}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)\approx -{{T}_{1}}\sum\limits_{n_{1}^{{}}=1}^{N_{1}^{{}}}{n_{1}^{{}}{{Q}_{{{n}_{1}},k}}},</math><br />
 
<math>
 
<math>
I'_{k}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)\approx -{{T}_{1}}\sum\limits_{n_{1}^{{}}=1}^{N_{1}^{{}}}{n_{1}^{{}}{{Q}_{{{n}_{1}},k}}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)},
+
Q'_{k}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)\approx {{T}_{1}}\sum\limits_{n_{1}^{{}}=1}^{N_{1}^{{}}}{n_{1}^{{}}{{I}_{{{n}_{1}},k}}}.</math>
</math><br />
+
<math>
+
Q'_{k}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)\approx {{T}_{1}}\sum\limits_{n_{1}^{{}}=1}^{N_{1}^{{}}}{n_{1}^{{}}{{I}_{{{n}_{1}},k}}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)}.
+
</math>
+
  
 
По этой методике весь интервал интегрирования в корреляторе разбивается на <math>N_1</math> равных частей длительностью <math>T_1</math>. На этих малых интервалах рассчитываются традиционные корреляционные суммы <math>I_{n_1, k}, Q_{n_1, k}</math>, а потом проводится их взвешенное суммирование. Чем больше <math>N_1</math>, тем точнее оказывается приведенная методика. Допустим "большой" коррелятор копит <math>T = 10</math> мс, тогда целесообразно выбрать <math>T_1 = 1</math> мс и <math>N_1 = 10</math>.
 
По этой методике весь интервал интегрирования в корреляторе разбивается на <math>N_1</math> равных частей длительностью <math>T_1</math>. На этих малых интервалах рассчитываются традиционные корреляционные суммы <math>I_{n_1, k}, Q_{n_1, k}</math>, а потом проводится их взвешенное суммирование. Чем больше <math>N_1</math>, тем точнее оказывается приведенная методика. Допустим "большой" коррелятор копит <math>T = 10</math> мс, тогда целесообразно выбрать <math>T_1 = 1</math> мс и <math>N_1 = 10</math>.

Версия 12:43, 2 ноября 2015

Содержание

Дискриминатор описывается выражением

u_{D \omega, k} = I_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k})I'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) + Q_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k})Q'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}),

где
I_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
Q_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
I'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = -\sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)(l-1)T_d\mbox{sin}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
Q'_k(\widetilde{\tau}_k,\widetilde{\omega}_{d\,k}) = \sum_{l=1}^{L}y(t_{k,l})h_{c}(t_{k,l}-\widetilde{\tau}_k)(l-1)T_d\mbox{cos}(\omega_0t_{k,l}+\widetilde{\omega}_{d\,k}(l-1)T_d)),
L=\frac{T}{{{T}_{d}}} - число отсчетов за время T интегрирования в корреляторе, T_d - интервал дискретизации.

Особенности работы

Для работы дискриминатора требуется формирование особенных квадратур I'_k, Q'_k. Они представляют собой обычные квадратуры, умноженные на линейно-возрастающую функцию (l-1)T_d (индекс времени l растет - множитель растет). Аппаратно такой коррелятор не реализован. Есть предложение [1] заменить честный расчет I'_k, Q'_k суммой взвешенных корреляционных сумм:

I'_{k}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)\approx -{{T}_{1}}\sum\limits_{n_{1}^{{}}=1}^{N_{1}^{{}}}{n_{1}^{{}}{{Q}_{{{n}_{1}},k}}},

Q'_{k}\left( {{{\tilde{\tau }}}_{k}},{{{\tilde{\omega }}}_{{{d}^{{}}}k}} \right)\approx {{T}_{1}}\sum\limits_{n_{1}^{{}}=1}^{N_{1}^{{}}}{n_{1}^{{}}{{I}_{{{n}_{1}},k}}}.

По этой методике весь интервал интегрирования в корреляторе разбивается на N_1 равных частей длительностью T_1. На этих малых интервалах рассчитываются традиционные корреляционные суммы I_{n_1, k}, Q_{n_1, k}, а потом проводится их взвешенное суммирование. Чем больше N_1, тем точнее оказывается приведенная методика. Допустим "большой" коррелятор копит T = 10 мс, тогда целесообразно выбрать T_1 = 1 мс и N_1 = 10.

Дискриминационная характеристика

В разработке....

Флуктуационная характеристика

Дисперсия шума эквивалентного наблюдения частоты, т.е. шума с выхода дискриминатора, пересчитанного к его входу при нулевой расстройке по частоте [2]:

D_{\widetilde{\eta}_\omega} = \frac{6}{q_{c/n_0}T^3}(1+\frac{1}{q_{c/n_0}T}).

Сравнение с другими ЧД

Интересно сравнить дисперсию шумов по входу для различных дискриминаторов:

 D_1 = D_{\widetilde{\eta}_\omega} = \frac{1}{q_{c/n_0}T_{cross}^3}(1+\frac{1}{2q_{c/n_0}T_{cross}}).
  • Дисперсия шума на входе рассматриваемого в этой статье дискриминатора:
 D_2 = D_{\widetilde{\eta}_\omega} = \frac{6}{q_{c/n_0}T_{optim}^3}(1+\frac{1}{q_{c/n_0}T_{optim}}).

Пусть cross дискриминатор реализован по схеме без перекрытия, тогда T_{optim} = 2T_{cross} и

\frac{D_2}{D_1} = \frac{6}{8},

или для СКО:

\sigma_2 = 0.866*\sigma_1.

Дискриминатор cross проигрывает I_kI'_k+Q_kQ'_k около 15% по СКО во всем диапазоне с/ш. На рисунке ниже приведен график зависимости СКО эквивалентных шумов представленных ЧД от отношения сигнал/шум q_{c/n0}

Ошибка создания миниатюры: convert: unable to open image `/app/images/0/07/20151029__.png': No such file or directory @ error/blob.c/OpenBlob/2641.
convert: no images defined `/tmp/transform_2ad140a2c41d-1.png' @ error/convert.c/ConvertImageCommand/3044.

Листинг модели

Ссылки

  1. Публикация:Корогодин 2013 Разработка алгоритмов обработки сигналов СНС в аппаратуре определения угловой ориентации объектов
  2. Публикация:Корогодин 2013 Потенциальные характеристики оценивания частоты в некогерентном приемнике
Персональные инструменты
Пространства имён

Варианты
Действия
SRNS Wiki
Рабочие журналы
Приватный файлсервер
QNAP Сервер
Инструменты