МИНИСТЕРСТВО ОБРАЗОВАНИЯ И НАУКИ РФ

ФГБОУ ВПО «НИУ «МЭИ»

ИНСТИТУТ РАДИОТЕХНИКИ И ЭЛЕКТРОНИКИ (ИРЭ)

Направление подготовки: 210601 Радиоэлектронные системы и комплексы

Профиль(и) подготовки: Радионавигационные системы и комплексы

Квалификация (степень) выпускника: специалитет

Форма обучения: очная

РАБОЧАЯ ПРОГРАММА УЧЕБНОЙ ДИСЦИПЛИНЫ "АППАРАТУРА ПОТРЕБИТЕЛЕЙ СРНС"

Цикл:	профессиональный	
Часть цикла:	вариативная/по выбору	
№ дисциплины по учебному плану:	ИРЭ; СЗ.33	
Часов (всего) по учебному плану:	216	9 семестр – 180 час. 10 семестр – 36 час.
Трудоемкость в зачетных единицах:	6	9 семестр – 5 10 семестр – 1
Лекции	36 час	9 семестр
Лабораторные работы	18 час.	9 семестр
Расчетные задания, рефераты	14 час. самостоятельной работы	9 семестр
Объем самостоятельной работы по учебному плану (всего)	162 час	9 семестр – 126 час. 10 семестр – 36 час.
Экзамены	36 час. самостоятельной работы	9 семестр
Курсовые проекты (работы)	36 час.	10 семестр

Москва - 2013

1. ЦЕЛИ И ЗАДАЧИ ОСВОЕНИЯ ДИСЦИПЛИНЫ

Целью дисциплины является изучение основных составляющих аппаратуры потребителей систем спутниковой навигации, изучение ключевых алгоритмов первичной обработки сигналов и решения навигационной задачи.

По завершению освоения данной дисциплины студент способен и готов:

- рассчитывать энергетику радиолинии спутниковой навигации;
- разрабатывать алгоритмы обнаружения и поиска навигационного сигнала;
- создавать алгоритмы слежения за фазой, частотой и задержкой навигационного сигнала:
- разрабатывать алгоритмы вторичной обработки, а именно решения навигационной задачи

Задачами дисциплины являются:

- познакомить обучающихся с основными принципами функционирования аппаратуры потребителей систем спутниковой радионавигации;
- дать информацию о типовых характеристиках входящих в навигационную аппаратуру систем:
- научить обоснованно выбирать и проводить оптимизацию параметров систем, входящих в аппаратуру потребителей;
 - научить анализировать характеристики аппаратуры потребителей СРНС.

2. МЕСТО ДИСЦИПЛИНЫ В СТРУКТУРЕ ООП ВПО

Дисциплина относится к вариативной части профессионального цикла основной образовательной программы подготовки специалистов по профилю «Радионавигационные системы и комплексы» направления 210400 «Радиоэлектронные системы и комплексы».

Дисциплина базируется на следующих дисциплинах: «Статистическая радиотехника», «Цифровая обработка сигналов», «Радиоавтоматика», «Основы теории радионавигационных систем и комплексов».

Знания, полученные по освоению дисциплины, необходимы при выполнении дипломной выпускной квалификационной работы.

3. РЕЗУЛЬТАТЫ ОСВОЕНИЯ ДИСЦИПЛИНЫ

В результате освоения учебной дисциплины обучающиеся должны демонстрировать следующие результаты образования:

Знать:

- общие принципы построения и функционирования аппаратуры потребителей СРНС;
- состав аппаратуры потребителей СРНС, требования к отдельным блокам;
- методы навигационных измерений;
- влияние внешних факторов, определяющих точность измерений.

Уметь:

- применять методы определения местоположения с помощью СРНС;
- рассчитывать энергетику навигационной радиолинии;
- рассчитывать параметры следящих систем аппаратуры потребителей СРНС;
- анализировать требования, предъявляемые потребителем к навигационной аппаратуре при решении различных практических задач;

- оценивать погрешности навигационных измерений;
- использовать информацию о новых технических решениях и новых видах навигационной аппаратуры при последующей разработке подсистем СРНС.

Владеть:

- навыками дискуссии по профессиональной тематике (ОК-12);
- терминологией в области СРНС (ОК-2);
- информацией о новых технических решениях и новых видах навигационной аппаратуры СРНС (ПК-17);
- навыками применения полученной информации при проектировании элементов и подсистем СРНС (ПК-6).
- способностью осуществлять обоснованный выбор структурных схем аппаратуры радионавигационных систем и комплексов (ПСК-4.1);
- способностью проводить анализ тактико-технических показателей аппаратуры радионавигационных систем и комплексов (ПСК-4.2);
- способностью проводить оптимизацию аппаратуры радионавигационных систем и комплексов (ПСК-4.3);
- способностью оценивать погрешности навигационных измерений (ПСК-4.4);
- способностью проводить моделирование аппаратуры радионавигационной системы (ПСК-4.5).

4. СТРУКТУРА И СОДЕРЖАНИЕ ДИСЦИПЛИНЫ

4.1 Структура дисциплины

Общая трудоемкость дисциплины составляет 6 зачетных единиц, 216 часов.

№ п/п	Раздел дисциплины. Форма промежуточной аттестации (по семестрам)	Все го ча- сов на раз дел	C e M ec Tp	вклю ную ј	учая саг работу	ной раб мостоя студен ть (в ча	гель- тов и	Формы текущего контроля успеваемости (по разделам)
				ЛК	пр	лаб	сам.	
1	2	3	4	5	6	7	8	9
1	Функциональная схема НАП: антенный модуль, радиочастотный блок НАП, вычислитель.	33	9	6		2	9	Расчёт: энергетика радиолинии
2	Алгоритмы первичной обработки сигналов: поиск, слежение и выделение навигационного сообщения	83	9	16		12	28	Расчёт: статистические эквиваленты коррелятора Расчёт: оценка параметров блока быстрого поиска Расчёт: оценка полосы системы слежения за частотой
3	Алгоритмы вторичной	45	9	8		0	14	Расчёт: псевдодаль-

	обработки сигналов: одношаговый и фильтрационный методы решения навигационной задачи, алгоритмы сглаживания вторичных оценок, контроль целостности							номерный метод решения навигационной задачи
4	Характеристики НАП СРНС и особенности её использования в раз- личных областях	35	9	6		4	9	Расчёт: сравнение помехоустойчивости когерентного и некогерентного режимов
	Расчётные задания	12	9				12	
	Зачет	18					18	
	Экзамен	36	9				36	
	Курсовой проект	36	10		18		18	
	Итого:	216		36	36	18	144	

4.2 Содержание лекционно-практических форм обучения

4.2.1. Лекции:

<u> 1. Обзор</u>

Назначение АП СРНС. Обобщенная функциональная схема АП СРНС. Принципы работы АП: антенна, радиочастотный блок, первичная и вторичная обработка.

2. Радиочастотный тракт

Антенна АП, характеристики антенны: диаграмм направленности поляризация. Предварительный МШУ: назначение характеристики. Коэффициент шума. Радиочастотный блок: обобщенная структурная схема, основные характеристики. Радиочастотный блок в совмещенной АП.

3. АЦП, частотный план

Аналого-цифровой преобразователь. Синтезатор частот: принципы построения, основные характеристики. План частот АП.

4. Коррелятор

Принципы построения и структура коррелятора. Цифровой генератор гармонического сигнала. Цифровой генератор дальномерного кода.

5. Обнаружение навигационного радиосигнала

Обнаружение сигналов: алгоритмы обнаружения, статистические характеристики обнаружения.

6. Поиск навигационного радиосигнала

Поиск сигналов по задержке и частоте, характеристики поиска.

7. Быстрый поиск навигационного радиосигнала

Современные требования к времени выдачи первого навигационного решения. Оценка требуемого количества параллельных корреляторов. Способы снижения аппаратных затрат на реализацию многоканальных корреляторов.

8. Система слежения за фазой

Система слежения за фазой сигнала: структурная схема СС Φ , дискриминаторы, следящий фильтр.

9. Система слежения за частотой

Система слежения за частотой сигнала: структурная схема ССЧ, дискриминаторы, следящий фильтр.

10. Система слежения за задержкой

Система слежения за задержкой сигнала: структурная схема ССЧ, дискриминаторы, следящий фильтр.

11. Декодирование навигационного сообщения

Демодуляция навигационных данных. Помехоустойчивое кодирование. Декодирование навигационных данных: алгоритм декодирования демодуляции, статистические характеристики декодирования.

12. Одношаговый метод решения навигационной задачи

Решение навигационной задачи методом наименьших квадратов. Геометрический фактор.

13. Фильтрационный алгоритм решения навигационной задачи

Алгоритм решения навигационной задачи в форме расширенного фильтра Калмана.

14. Алгоритмы сглаживания вторичных оценок

Фильтр для сглаживания вторичных оценок аппаратуры потребителей СРНС. Учёт вектора скорости потребителя.

15. Контроль целостности

Контроль целостности СРНС в АП: общие принципы, алгоритмы, статистические характеристики.

16. Помехоустойчивость НАП СРНС

Оценка помехоустойчивости НАП СРНС. Зависимость помехоустойчивости от полосы навигационного радиосигнала. Методы повышения помехоустойчивости.

17. Погрешности измерений СРНС

Погрешности первичных оценок — псевдодальности, псевдоскорости. Погрешности вторичных оценок — координат, вектора скорости, смещения шкалы времени.

18. Особенности использования СРНС в различных областях

Классы аппаратуры потребителей СРНС. Требования к аппаратуре различных классов.

4.2.2. Практические занятия

В часы практических занятий проводятся индивидуальные консультации студентов по теме курсового проекта.

4.3. Лабораторные работы

- Исследование характеристик МШУ аппаратуры потребителей СРНС и условий его работы
- Исследование коррелятора АП СРНС
- Чувствительность навигационных модулей
- Помехоустойчивость навигационных модулей
- Многолучевое распространение сигналов СРНС

4.4. Расчетные задания

- Энергетика радиолинии.
- Статистические эквиваленты коррелятора
- Оценка параметров блока быстрого поиска.
- Оценка полосы системы слежения за частотой.
- Псевдодальномерный метод решения навигационной задачи.
- Сравнение помехоустойчивости когерентного и некогерентного режимов.

4.5. Курсовые проект

• Автоматическое испытание НАП

5. ОБРАЗОВАТЕЛЬНЫЕ ТЕХНОЛОГИИ

Лекционные занятия занятия следует проводить с применением демонстрационного материала, для чего необходимо иметь в аудитории компьютер и проектор. Целесообразно обеспечивать студентов раздаточным материалом на 1-2 лекции вперед. Материал должен носить иллюстративный характер (схемы, графики, рисунки и т.д.) и не подменять конспекта, который слушатель должен составлять самостоятельно. На подготовку к лекции слушатель должен затрачивать примерно 15 мин. на час лекции.

Практические занятия включают проведение расчетных заданий с использованием ЭВМ.

Лабораторные работы выполняются с использованием специализированного оборудования и стенлов.

Самостоятельная работа включает подготовку к тестам и контрольным работам, оформление реферата и подготовку его презентации к защите, подготовку к зачету.

6. ОЦЕНОЧНЫЕ СРЕДСТВА ДЛЯ ТЕКУЩЕГО КОНТРОЛЯ УСПЕВАЕМОСТИ,

Для текущего контроля успеваемости используются различные виды тестов, контрольные работы, устный опрос, презентация реферата.

Аттестация по дисциплине – зачет.

Оценка за освоение дисциплины, определяется интегрально по результатам тестов, контрольной, защиты реферата и сдачи зачета.

В приложение к диплому вносится оценка за 9 семестр.

7. УЧЕБНО-МЕТОДИЧЕСКОЕ И ИНФОРМАЦИОННОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

7.1. Литература:

а) основная литература:

- 1) ГЛОНАСС. Принципы построения и функционирования./ Под ред А.И. Перова, В.Н. Харисова М.: Радиотехника, 2010.
- 2) Перов А.И. Основы построения спутниковых радионавигационных систем. Учеб. пособие для вузов. М.: Радиотехника, 2012, 240 с.

б) дополнительная литература:

1) Kaplan E. D. Understanding GPS: Principles and applications. - Boston.: Artech house, 2006.

7.2. Электронные образовательные ресурсы:

а) лицензионное программное обеспечение и Интернет-ресурсы:

- 1. Операционная система GNU/Linux/KDE и пакеты LibreOffice, Okular.
- 2. Специализированные библиотеки программ и алгоритмов систем для научных исследований MATLAB/Octave, GNU gcc, Python/pysci, matplotlib, gnuplot, Qt, LaTeX.

б) другие:

- 1. Оригинальные программы для выполнения расчётных заданий путем имитационного моделирования на ЭВМ.
 - 2. Наборы оригинальных презентаций для лекционных и лабораторных занятий.
 - 3. Базы данных, информационно-справочные и поисковые системы.

8. МАТЕРИАЛЬНО-ТЕХНИЧЕСКОЕ ОБЕСПЕЧЕНИЕ ДИСЦИПЛИНЫ

- 1. Для обеспечения освоения дисциплины необходимо наличие учебной аудитории, снабженной мультимедийными средствами для представления презентаций лекций и показа учебных фильмов.
- 2. Лаборатория, укомплектованная персональными ЭВМ для проведения практических занятий и соответствующими стендами для выполнения разделов лабораторного практикума и расчетно-графических работ, предусматривающих проведение расчетов и моделирования радионавигационных систем и отдельных устройств, входящих в их состав.

Программа составлена в соответствии с требованиями ФГОС ВПО и с учетом рекомендаций ПрООП ВПО по направлению подготовки 210601 «Радиоэлекторнные системы и комплексы» и профилю «Радионавигационные системы и комплексы».

ПРОГРАММУ СОСТАВИЛ:

к.т.н., ассистент Болденков Е. Н.

к.т.н, ассистент Корогодин И. В.

Зав. кафедрой «Радиотехнические системы» д.т.н., профессор

Перов А.И.

Директор ИРЭ д.т.н., проф.

Мирошникова И.Н.